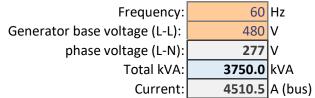
Circulating Currents in Parallel Generator Applications (Rev. A13)


Quantities are per unit percentage unless otherwise specified All units assumed to have the same base voltage

Project data:

Project Name: Sample DPNL Simulation Project Description: 2 x 800kW existing 0.8667 pitch, 1 x 800kW new 0.6667 pitch Prepared by: Date:

Comments:

Base Values:

Similar pitch parallel machines ("Y" side)

	[Ratings			
	Generator	Power	PF	Apparent	Voltage	Current	Z_base
	Pitch	kW		kVA	V	Α	ohm
Gen 1:	2/3	800	0.800	1000.0	480	1202.8	0.2304
Gen 3:							
Gen 5:							
Gen 7:							
Gen 9:							
Gen 11:							

					Reactance	s at fundame	ntal frequenc	y ("Y" side)				
		Zero Seq	uence X0			Negative S	equence X2			Subtrans	sient X''d	
	Unsati	urated	Satu	rated	Unsat	urated	Satu	rated	Unsat	urated	Satu	rated
	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm
Gen 1:	0.95%	0.0022	0.95%	0.0022	11.41%	0.0263	11.41%	0.0263	10.94%	0.0252	10.94%	0.0252
Gen 3:												
Gen 5:												
Gen 7:												
Gen 9:												
Gen 11:												
		0.0022		0.0022		0.0263		0.0263		0.0252		0.0252
	3 x fund:	0.0066				0.0789				0.0756		

	Ec	uivalent Read	ctances "Y" sic	le
	Unsati	urated	Satur	ated
	(X0+X2-	⊦X''d)/3	(X0+X2+X''d)/3	
	%p.u.	ohm	%p.u.	ohm
	7.77%	0.0179	7.77%	0.0179
Bus kVA: 1000.0 kVA				
lsc: kA	at fund freq	0.0179	at fund freq	0.0179
lsc_3Ph: kA	at 3 x fund	0.0537	at 3 x fund	

SOURCE Calculation

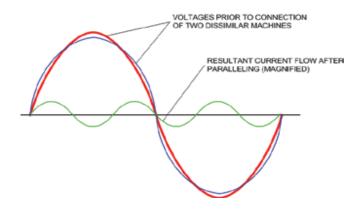
Second set of similar pitch parallel machines or other Source (different than the above) ("Z" side). Only this side can be used as solidly grounded Utility Transformer!

				Ratings			
	Generator	Power	PF	Apparent	Voltage	Current	Z_base
	Pitch	kW		kVA	V	Α	ohm
Gen 2:	13/15	800	0.800	1000.0	480	1202.8	0.2304
Gen 4:	13/15	800	0.800	1000.0	480	1202.8	0.2304
Gen 6:							
Gen 8:							
Gen 10:							
Gen 12:							

Bus kVA:

lsc: lsc_3ph: 2000.0

kVA kA


kΑ

					Reactance	s at fundamer	ntal frequenc	y ("Z" side)					
		Zero Seq	uence X0			Negative Se	equence X2			Subtransient X''d (***)			
	Unsatu	irated	Satu	rated	Unsat	urated	Saturated		Unsaturated		Satu	rated	
	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	%p.u.	ohm	
Gen 2:	10.33%	0.0238	10.33%	0.0238	15.67%	0.0361	15.67%	0.0361	15.49%	0.0357	15.49%	0.0357	
Gen 4:	10.33%	0.0238	10.33%	0.0238	15.67%	0.0361	15.67%	0.0361	15.49%	0.0357	15.49%	0.0357	
Gen 6:													
Gen 8:													
Gen 10:													
Gen 12:													
		0.0119		0.0119		0.0181		0.0181		0.0178		0.0178	
3 x f	undamental:	0.0357				0.0542				0.0535			
									•				
	("Y" "Z"):	0.0018		0.0018		0.0107		0.0107		0.0104		0.0104	
		0.0055				0.0321				0.0313			
(***) For Tra	nsormer as a p	oarallel sourc	e the Subtran	sient Reactan	ce value is us	ed as the Posi	tive-Sequenc	e Reactance X	1				

	Equivalent r	eactances "Z" sig	de
U	nsaturated	Satu	rated
(X0	+X2+X''d)/3	(X0+X2	+X''d)/3
%p.u	. ohm	%p.u.	ohm
13.839	% 0.0319	13.83%	0.0319
13.839	% 0.0319	13.83%	0.0319
at fund t	freq 0.0159	at fund freq	0.0159
at 3 x f	und 0.0478	at 3 x fund	
Parallel i	mp: 0.0077	Parallel imp:	0.0077
at 3 x fu	und: 0.0230	at 3 x fund:	
	0.0084		0.0084
	0.0253		

When generators are paralleled, the voltages of the two machines are forced to the exact same magnitude at the point where they are connected to the paralleling bus. Differences in instantaneous waveforms of electromotive force (emf) generated by the alternators will result in current flow from the machine with higher instantaneous emf to the machine(s) with lower instantaneous emf.

Voltage waveform lines cross each other three times in each half cycle, therefore the current generated appears as a triple of the fundamental frequency current (third-order harmonic).

Circulating Current Calculation

Assumption: Select an instantaneous voltage difference that is estimated by generator manufacturer: Instantaneous voltage difference is at 3 x fundamental: Vg1-Vg2 = 10 V 3.6% [%p.u.] 180 Hz

Circulating phase current at 3 x fundamental:							
I_cir =	237						
Circulating neutral current	at 3 x fundan						
I_cir_N =	710						

with applica	tion of GenLir	nk DPNL						GEN. 1 DPNL	GEN. 2
	DPNL Ratings	;			"Shoulder"		"Circ. Path"	2/3 PITCH Y Z	5/6 PITCH
Voltage	Curr	ent A	Z_base	DP	NL Zero-Seq X	.yx	X.yz		
V	Return	Circ.	ohm	mH	%p.u.	ohm	ohm	<u> </u>	ඉ්ඉිලි
480	1500	750	0.3695	0.044	4.49%	0.0166	0.0662		
				at 3 x	fundamental:	0.0498	0.20	рна	
	DPNL satu	ration factor:	7		DPNL X_sat:	0.0024		РН В	i
								РН С	_
Circulating p	hase current v	vith DPNL at 3	3 x fundament	al:				N	
	I_cir =	15.7	A			15.1	reduction	INSTALLATION IN A 4	-WIRE SYSTEM
Circulating n	eutral current	with DPNL at	3 x fundame	ntal:					
	I_cir_dpnl =	47.0	A			15.1	reduction		

-

S_base =	3750	kVA	three-phase apparent power base
V_base =	480	V	line-to-line voltage base
I_base =	4510.5	А	current base
Z_base =	0.0614	ohm	impedance base

Fault Current Calculation for each side

No NGI:		"Y" side				"Z"	side			
	Z_eq:	0.0179	ohm	0.29	p.u.	0.0159	ohm	0.26	p.u.	Equivalent impedance
	X1_eq:	0.0252	ohm	0.41	p.u.	0.0178	ohm	0.29	p.u.	Equivalent positive-sequence reactance
3-ph fault ((Isc_3ph):	10.99	kA	2.44	p.u.	15.53	kA	3.44	p.u.	Estimated 3-phase fault current
ground f	ault (Isc):	15.49	kA	3.43	p.u.	17.39	kA	3.86	p.u.	Estimated line-to-ground fault current

Fault Current Calculation of parallel sources

No NGI:						
Z_eq:	0.0084	ohm	0.14	p.u.	Equivalent impedance of parallel sources	
X1_eq:	0.0104	ohm	0.17	p.u.	Equivalent positive-sequence reactance of parallel sources	
Three-phase fault is bal	anced, no	negative- o	r zero-sequ	ence curren	t components are present	(a) Solidly
3-ph fault (Isc_3ph):	26.52	kA	5.88	p.u.	Estimated 3-phase fault current at the generators terminals	
Single-phase fault: all th	nree positiv	ve-, negativ	e-, and zero	-sequence	current components are present	
ground fault (Isc):	32.88	kA	7.29	p.u.	Estimated line-to-ground fault current at the generators terminals	

Fault Current Calculation with DPNL

With DPNL:		"Y"	side		"Z"	side		
Z_eq:	0.0250	ohm	0.41 p.u.	0.0230	ohm	0.38	p.u.	Equivalent impedance
X1_eq:	0.0252	ohm	0.41 p.u.	0.0178	ohm	0.29	p.u.	Equivalent positive-sequence reactance
3-ph fault (Isc_3ph):	10.99	kA	2.44 p.u.	15.53	kA	3.44	p.u.	Estimated 3-phase fault current
ground fault (Isc):	11.08	kA	2.46 p.u.	12.03	kA	2.67	p.u.	Estimated line-to-ground fault current

Fault Current Calculation of parallel sources with DPNL

with NGI

Z_eq:	0.0120	ohm	0.20	p.u.	Equivalent impedance of parallel sources			
X1_eq:	0.0104	ohm	0.17	p.u.	Equivalent positive-sequence reactance of parallel sources			
Three-phase fault is balanced, no negative- or zero-sequence current components are present								
3-ph fault (Isc_3ph):	26.52	kA	5.88	p.u.	Estimated 3-phase fault current at the generators terminals			
Single-phase fault: all three positive-, negative-, and zero-sequence current components are present								
ground fault (Isc):	23.11	kA	5.12	p.u.	Estimated line-to-ground fault current at the generators terminals			
Note: DPNL and/or NGI application does not affect three-phase fault.								

Note: DPNL and/or NGI application does not affect three-phase fault.

Effective Grounding Calculation

No DPNL:	"Y" side	"Z" side	_	
X ₁ :	0.0252	0.0178	ohm	sub-transient reactance of the generator
X ₀ :	0.0022	0.0119	ohm	zero-sequence reactance of the generator
X ₀ /X ₁ ratio:	0.0868	0.6669	< 3 ? is	effectively grounded

Individual NGI Effective Grounding Calculation With NGI in each generator neutral:

With NGI in each generator heutral:							
X ₁ :	0.0252	0.0178	ohm	sub-transient reactance of the generator			
X ₀ with NGI:	0.0232	0.0169	ohm	zero-sequence reactance of the generator with DPNL			
max. allowable X ₀ :	0.0756	0.0535	ohm	maximum allowable zero-sequence reactance			
X_0/X_1 ratio:	0.9201	0.9491	< 3 ? is	effectively grounded			

DPNL Effective Grounding Calculation With DPNL in the neutral:

With DPNL in the neutral:							
X ₁ :	0.0252	0.0178	ohm	sub-transient reactance of the generator			
X ₀ with DPNL:	0.0046	0.0143	ohm	zero-sequence reactance of the generator with DPNL			
max. allowable X ₀ :	0.0756	0.0535	ohm	maximum allowable zero-sequence reactance			
X_0/X_1 ratio:	0.1808	0.7997	< 3 ? is	effectively grounded			

DPNL + NGI Effective Grounding Calculation

With DPNL + NGI in the neutral:

X ₁ :	0.0252	0.0178	ohm	sub-transient reactance of the generator	
X ₀ with DPNL+NGI:	0.0022	0.0143	ohm	zero-sequence reactance of the generator with DPNL + NGI	
max. allowable X ₀ :	0.0756	0.0535	ohm	maximum allowable zero-sequence reactance	
X_0/X_1 ratio:	0.0868	0.80	< 3 ? is	effectively grounded	