MIRUS International Inc.

InSight™

Power Meter and Alarm Monitor

IMPORTANT SAFETY INSTRUCTION

SAVE THESE INSTRUCTIONS - This manual contains important instructions for the InSight[™] Power Meter and Alarm Monitor that must be followed during installation, operation, and maintenance of the InSight[™] Power Meter and Alarm Monitor and its auxiliary equipment.

WARNING

OPENING ENCLOSURES EXPOSES HAZARDOUS VOLTAGES. ALWAYS REFER SERVICE TO QUALIFIED PERSONNEL ONLY.

WARNING
WARNING
As standards, specifications, and designs are subject to change, please ask for confirmation of the information given in this publication.
This manual is a controlled document; pages should not individually be removed from this binder.

MIRUS International Inc.

InSight™

INSTALLATION, OPERATION AND MAINTENANCE GUIDE

INST-M001-A5 2018-11-30

MIRUS International Inc. 31 Sun Pac Blvd. Brampton, Ontario Canada L6S 5P6

1 - 888 - TO – MIRUS (1 - 888 - 866 – 4787) Tel: (905) 494-1120 Fax: (905) 494-1140 E-Mail: mirus@mirusinternational.com Website: www.mirusinternational.com

Warranty

Seller warrants to the Ultimate Purchaser (the purchaser who buys for use, and not for resale) that all products furnished under this order and which are manufactured by Seller will conform to final specifications, drawings, samples and other written descriptions approved in writing by Seller, and will be free from defects in materials and workmanship. These warranties shall remain in effect for a period of twelve (12) months from the date of installation or eighteen (18) months from the date of shipment, whichever occurs first. Parts replaced or repaired in the warrant period shall carry the unexpired portion of the original warranty.

The liability of Seller hereunder is limited to replacing or repairing at Seller's factory or on the job site at Seller's option, any part or parts which have been returned to the Seller and which are defective or do not conform to such specifications, drawings or other written descriptions; provided that such part or parts are returned by the Ultimate Purchaser within ninety (90) days after such defect is discovered. The Seller shall have the sole right to determine if the parts are to be repaired at the job site or whether they are to be returned to the factory for repair or replacement. If during the pro-rated portion of the warranty a replacement unit is warranted, the purchaser shall bear the cost of a replacement unit on a pro-rated basis. The replacement cost shall be 10% of the original purchase price in the second year, increasing yearly to a maximum of 90% of the original purchase price in the 10th year. All items returned to Seller for repair or replacement must be sent freight prepaid to its factory. Purchaser must obtain Seller's Return Materials Authorization (RMA) prior to returning items. The above conditions must be met if warranty is to be valid. Seller will not be liable for any damage done by unauthorized repair work, unauthorized replacement parts, from any misapplication of the item, or for damage due to accident, abuse, or Act of God.

In no event shall the Seller be liable for loss, damage, or expense directly or indirectly arising from the use of the units, or from any other cause, except as expressly stated in this warranty. Seller makes no warranties, express or implied, including any warranty as to merchantability or fitness for a particular purpose or use. Seller is not liable for and Purchaser waives any right of action it has or may have against Seller for any consequential or special damages arising out of any breach of warranty, and for any damages Purchaser may claim for damage to any property or injury or death to any person arising out of its purchase of the use, operation or maintenance of the product. Seller will not be liable for any labor subcontracted or performed by Purchaser for preparation of warranted item for return to Seller's factory or for preparation work for field repair or replacement. Invoicing of Seller for labor either performed or subcontracted by Purchaser will not be considered as a liability by the Seller.

This warranty shall be exclusive of any and all other warranties express or implied and may be modified only by a writing signed by an officer of the Seller. This warranty shall extend to the Ultimate Purchaser but to no one else. Accessories supplied by Seller, but manufactured by others, carry any warranty the manufacturers have made to Seller and which can be passed on to Ultimate Purchaser.

Seller makes no warranty with respect to whether the products sold hereunder infringe any patent, U.S., Canadian or foreign, and Buyer represents that any specially ordered products do not infringe any patent. Buyer agrees to indemnify and hold Seller harmless from any liability by virtue of any patent claims where Buyer has ordered a product conforming to Buyer's specifications, or conforming to Buyer's specific design.

Buyer has not relied and shall not rely on any oral representation regarding the Product sold hereunder and any oral representation shall not bind Seller and shall not be part of any warranty.

There are no warranties which extend beyond the description on the face hereof. In no event shall MIRUS International Inc. be responsible for consequential damages or for any damages except as expressly stated herein.

Service and Factory Repair - Call 1 - 888 - TO - MIRUS (1 - 888 - 866 - 4787)

Direct questions about the operation, repair, or servicing of this equipment to MIRUS International Inc. Customer Support Services. Include the part number, assembly number, and serial number of the unit in any correspondence. Should you require factory service for your equipment, contact MIRUS International Inc. Customer Support Services and obtain a Return Materials Authorization (RMA) prior to shipping your unit. Never ship equipment to MIRUS International Inc. without first obtaining an RMA.

Proprietary Rights Statement

The information in this manual is the property of MIRUS International Inc., and represents a proprietary article in which MIRUS International Inc., retains any and all patent rights, including exclusive rights of use and/or manufacture and/or sale. Possession of this information does not convey any permission to reproduce, print, or manufacture the article or articles shown herein. Such permission may be granted only by specific written authorization, signed by an officer of MIRUS International Inc. InSight is a trademark of MIRUS International Inc. Other trademarks that may be used herein are owned by their

respective companies and are referred to in an editorial fashion only.

Revision History

Copyright ©	All rights reserved. Pr	inted in Canada
Revision: A	New Release	2014/04/07
Revision: A1	New Release	2014/12/23
Revision: A2	New Release	2015/02/26
Revision: A3	Update	2017/02/07
Revision: A4	Update	2017/11/16
Revision: A5	Update	2018/11/30

Contents

Section	Description	Page
1.0	Introduction	1-1
1 1	System Description	 1-1
12	Typical Configurations	1-2
1.2	Maior Components	1-4
1.0	Ontions	 1-6
1.4	Model Numbering	1-8
1.6	Specification	1-9
2.0	Installation	2-1
2.1	Receiving	2-1
2.2	Handling	2-2
2.3	Storage	2-2
2.4	Prerequisite to Installation	2-2
2.5	Installation Procedures	2-4
2.5.1	Placement	2-4
2.5.2	Connections	2-4
2.5.3	Communication	2-8
2.5.4	Temperature Monitoring	2-8
2.5.5	Digital Inputs	2-8
2.5.6	Relay Outputs	2-9
2.6	Startup Procedures	2-9
261	Checks Before Startup	2-9
262	Initial Startun	20 2-9
263	Checks After Startun	20 2-9
2.0.0		2-9
3.0	Operation	3-1
3.1	Browser Display Overview	3-1
3.2	Menu	3-2
3.3	Browser Display Screens	3-2
3.4	Local Display Screen Overview	3-6
3.5	Meter Settings and Configuration	3-8
3.6	7" High Performance Mountable Panel PC with L	inux. 3-9
4.0	Advanced Functions	4-1
4.1	Measurements	4-1
4.2	CGI Web Pages	4-1
4.3	Telnet Session	4-2
5.0	Maintenance	5-1
5.1	Preventative Maintenance	5-1
5.2	Troubleshooting	5-1
A.0	Modbus Implementation	A-1
		-

This manual has been designed for ease of use and organized for easy location of information.

How to use this manual To quickly find the meaning of terms used within the text, look to the Glossary.

This manual uses Note boxes to convey important information. Note boxes come in four varieties:

WARNING

A WARNING note box indicates information provided to protect the user and service personnel against safety hazards and/or possible equipment damage.

CAUTION

A CAUTION note box indicates information provided to protect the user and service personnel against possible equipment damage.

IMPORTANT

An IMPORTANT note box indicates information provided as an operating instruction or as an operating tip.

NOTE

A NOTE note box indicates information provided as an operating tip or an equipment feature.

Introduction

1.0 Scope

1

This manual provides information required for installation, operation, and maintenance of the InSight Power Meter and Alarm Monitor. Please read this manual thoroughly before installing and operating your InSight Power Meter. Retain this manual for future reference.

The manual is divided into four sections:

Section I - Introduction

This section introduces the InSight Power and Alarm Monitor including a general description, available options, and specifications.

Section II - Installation

This section describes installation of the InSight Power and Alarm Monitor, including receiving, handling, and storage procedures; prerequisites to installation; installation procedures; and start-up procedures.

Section III - Operation

This section presents operating information for the InSight Power and Alarm Monitor, including an overview of the system, its components, and their function; a description of the indicators and controls, and their function; and operational sequences to be followed for all conditions of normal, emergency, and maintenance operation.

Section IV - Maintenance

This section describes maintenance of the InSight Power and Alarm Monitor, including preventive maintenance, troubleshooting, and information about replacement parts.

A Glossary in the rear of the manual provides definitions of terms used within the text.

1.1 System Description

InSight[™] is a highly accurate, power meter and alarm system designed to continuously monitor Mirus products such as the Lineator Advanced Universal Harmonic Filter, Onics Power Distribution units and any Ulltra or Harmony transformer.

The monitoring system enhances the capability by examining its performance, gathering and processing information from its voltage, current, and temperature sensors, and controlling the operation of your system via the fully programmable I/O contacts.

INST-M001-A5

1.2 Typical Configurations

The InSight Power Monitor is supplied in various configurations. The following table describes the types of monitors available with their option code.

POW	ER MONITOR :	
	Option Type	Description
	PM	Performance Meter
	СМ	Capacitor Loss Monitor
	DM	Dual Monitor (Performance + Capacitor Monitoring)

 Table 1-1
 Available InSight Power Monitor Configurations

The following diagrams display the various configurations in which the InSight Power Meter and Alarm Monitor can be applied.

Figure 1-1 Standalone Performance Meter

Figure 1-2 Performance Meter or Capacitor Loss Monitor with Touchscreen Interface and Display

Figure 1-3 Dual Performance Meter and Capacitor Loss Monitor with Touchscreen Interface and Display

1.3 Major Components

Power Monitor

Figure 1-4 InSight Power Monitor

The power monitor is the main module for the InSight Power Meter and Alarm Monitor system. It provides all the connection terminals for voltage and current as well as temperature probes and external inputs and outputs.

InSight displays the following measurements. These measured values are accessible with an optional LCD touchscreen display or with any Browser on your personal Computer.

Voltages

3Φ RMS Voltage Wye (L-L, L-N), DELTA (L-L)

Voltage %THD Wye (L-N), DELTA (L-L)

Fundamental RMS Voltage Wye (L-N), DELTA (L-L)

Peak Voltage Wye (L-N), DELTA (L-L)

Frequency (Hz)

3Φ Average RMS Voltage Wye (L-L, L-N), DELTA (L-L)

Average Voltage %THD

Voltage Imbalance (%)

Currents

3Ф RMS Current

Current %THD

Crest Factor

Peak Current

K Factor

Neutral Current

3Ф Average RMS Current

Average Current %THD

Current Imbalance (%)

Demand Current (Amps)

Total Demand Distortion (%)

Alarms, Setpoints and I/O

Programmable for any values

Power

3Ф Active Power (kW) Total and Fundamental

3Ф Reactive Power (kVAR) Total and Fundamental

3Φ Apparent Power (kVA) Total and Fundamental

kW Demand

True Power Factor (PF)

Displacement Power Factor (dPF)

Energy

Total and Fundamental Active (kWh)

Total and Fundamental Reactive (kVARh)

Total and Fundamental Apparent (kVAh)

Total Maximum Demand (kW)

Harmonics

Phase Voltage %THD

Phase Current %THD

Phase Current K Factor

Harmonic Magnitudes

Harmonic Angles

Temperature

Four Temperature Inputs (°C)

Power Meter Internal Operating Temperature (°C)

1.4 Options

Most options must be specified at the time of the original order for factory installation. Some options can be field installed; contact your MIRUS Sales Representative for further information.

Power Supply

The InSight Power Meter is capable of accepting supply from a 24VAC, 24VDC or PoE when available.

- 24VAC Control transformer rated for 50VA min.
- 24VDC Power supply 0.42A 10W min.
- PoE 802.3af compliant class-3, 48VDC nominal

The power supply input is designed for 24V AC and has full-bridge rectifier built in.

For 24V DC power supply connect (+) to any of the J3-1 (L) or J3-2 (N) terminal. Typically the terminal #1 is used, the one closer to the edge of the board, for connecting (+), but this is just arbitrary decision. Since the rectifier bridge is built into the circuit even reverse polarity is allowed.

The PoE (Power over Ethernet) allows a single cable to provide both data connection and power supply to the InSight Power Meter via the Ethernet port. Power sourcing equipment (PSE) such as a network Switch that provides PoE power on the Ethernet cable is required to provide power supply in this option. Otherwise use separate 24VAC power supply connected to J3 terminals.

LCD Display Options

7 Inch [178mm] TFT LCD

Provides local display of all monitored parameters and alarm messages (HMI). The touchscreen functions as a metering display as well as a programming input device.

It is a complete touch panel computer solution comprised of a 7" TFT LCD, baseboard and processor board with Linux OS.

ate 24VAC power supply cor

3.5 Inch [89mm] LCD with Keypad

Provides local display of all monitored parameters and alarm messages. Provides audible and visual warning signal when a warning condition is met. User input is performed through directional keypad and 'Return' button.

Ethernet Switch

Standard 10/100 Ethernet switch is used to network the InSight Meters and Control Logic module (HMI).

1.5 Model Numbering

The model number of the unit, located on the inside, can be parsed to indicate important parameters of the InSight Meter. Possible values are shown in Figure 1-8.

InSight Model Number

	INST - PM - DP - L3K5 - B6 - 4T
Meter Configuration PM = Performance Meter CM = Capacitor Loss Monito DM = Dual Monitor (Performa	r ance + Cap Monitoring)
Add-ons D0 = No Display D1 = Standard LCD Display D2 = 7" LCD Touchscreen Di	isplay
Mounting Kit (Includes CT's) L = Lineator Kit T = Transformer Kit	
Kit Size xxx = Lineator HP 005 = 5HP to 3K5 = 3500HP xxx = Transformer kVA	
System Voltage A = 208 H = 400 B = 480 K = 440 C = 600 Q = 690 F = 240 X = other	
Frequency 5 = 50 Hz 6 = 60 Hz	
Thermocouple Kit	

Figure 1-5 Nomenclature of InSight Power Meter

Thermocouples

1.6 Specifications

Power Supply

Nominal Operating Range Frequency Power Consumption PoE (Power over Ethernet) 24 V AC/DC 15 – 30 VAC (20 – 42 VDC) 50 / 60 Hz 6 W 802.3af compliant class-3, 48V DC nominal

Voltage Inputs

Nominal full scale

Supported Connections Fault Withstand 10 to 690 VAC [CSA /UL], 10 to 750 VAC [IEC] (direct Ph-Ph) 3-Wire Delta, 3-Wire WYE, 4-wire WYE 4490 V peak

Current Inputs

Class 10 Burden Fault Withstand 5A Nominal 0.066 ohm 17 A peak

Digital Inputs

AC isolation test voltage Voltage Max. Current Total Power Dissipation 3750 V RMS for 1 min. 24 V AC 20 mA 500 mW

Relay Outputs

AC isolation test voltage Max. Switching Voltage Max. Switching Current 4000 V RMS for 1 min. 250 V AC, 30 V DC @ 1 A N.O. 5A, N.C. 2A @ 125 V AC

Accuracy

0.2%
0.2%
0.2%
0.2%
1%
2.2°C or 0.75%

Specifications (continued)

Standard Compliance

Measurement Safety IEC, ANSI, IEEE cCSAus, CE Mark

Communication

Ethernet Protocols 10M / 100M BaseT UDP, TCP/IP, DHCP, NTP, FTP, HTTP, MODBUS TCP/IP, Telnet

Mechanical

Dimensions Weight Mounting 2.4"[61mm] H x 6.37"[162mm] W x 3.54"[90mm] D 10 oz [285 g] Din Rail (International Standards DIN 46277/3)

Environmental

Humidity Altitude Protection Level Enclosure Rating Storage -25°C to 50°C

-40°C - 85°C

Installation

2.0 Scope

This section describes installation of the InSight Power Meter and Alarm Monitor, including receiving, handling, and storage procedures, prerequisites to installation, installation procedures, and start-up procedures. For Mirus factory mounted InSight Power Meters you may skip this section and proceed to Section 3 Operation.

2.1 Receiving

Every effort is made to insure that the InSight Meter equipment arrives at its destination undamaged and ready for installation. Packing is designed to protect internal components. Care should be exercised to protect the equipment from impact at all times.

Before accepting the shipment from the freight carrier, inspect the exterior surfaces of shipping container(s), packaging, and equipment for damage that may have occurred during transit. If the shipping containers or equipment show evidence of damage, note the damage on the receiving document (bill of lading) prior to signing for receipt of equipment.

The equipment should be unpacked immediately after receipt, and inspected to determine if any internal damage (broken components, disconnected wiring, loose connections, etc.) has occurred. Verify that the equipment nameplate corresponds with the equipment ordered.

RECORD any external and internal damage observed for reporting to the transportation carrier. Call the carriers concerned at once for inspection, and request an inspection report. Do not contact Mirus International Inc. first – notify the carrier instead. If this precaution is not taken we cannot assist you in recovering the amount of the claim against the carrier. All claims should be as specific as possible and include purchase order (P.O.#) and serial numbers (S/N #), found on the nameplate.

A shipping label is affixed to the top of the shipping container which includes a variety of equipment and customer information, such as Purchase Order Number (P.O.#). Make certain that this information matches other shipping paper information.

Damage claims should be filed directly with the carrier. Replacements for damaged components can be ordered by calling 1-888-TO MIRUS (1-888-866-4787).

2

2.2 Handling

WARNING
Do not attempt to operate this equipment if there is evidence of shipping damage or you suspect the unit is damaged. Damaged equipment may present additional hazards to you. Contact technical support for advice before attempting to install and operate damaged equipment.

Unpack carefully; all parts and cables included with the meter system. Inspect the box carefully for loose parts before disposing of the packaging. Choose a suitable work surface for any preparation or assembly required prior to installation.

2.3 Storage

Although well packaged, this equipment is not suitable for storage outdoors. The equipment warranty will not be applicable if there is evidence of outdoor storage. If the equipment is to be stored indoors for any period of time, it should be stored with its protective packaging material in place. Protect the equipment at all times from excessive moisture, construction dirt, corrosive conditions and other contaminants. It is strongly suggested that the packaged protected equipment be stored in a climate-controlled environment of 0° to 40°C with a relative humidity of 0% to 95% (non-condensing). Do not, under any circumstances, stack other equipment on top of the InSight equipment whether packaged or not.

2.4 Prerequisite to Installation

Installation drawings are provided with each InSight Power Meter. Installation of equipment must be handled by skilled technicians and electricians familiar with the requirements of high energy electrical equipment. The installation must comply with the requirements of the National Electrical Code (CEC, NEC, ANSI/NFPA 70, latest issue) or other electrical authority having jurisdiction and with local codes and requirements as applicable. We strongly recommend contracting MIRUS Customer Support Services for start-up. Do not allow unqualified personnel to handle or operate the equipment.

Environmental considerations

The InSight Power Meter is intended for use in an environment where control of temperature and humidity is provided.

Mechanical considerations

For installations within existing or new enclosures, it is recommended the InSight be Din rail mounted onto a mounting panel that is galvanized or coated to inhibit corrosion.

Access

Once installed, internal access is not required for operation of the InSight Meter. For servicing and periodic inspection we recommend the unit in which it is installed be shutdown prior to accessing the equipment.

Cooling

The InSight is convection cooled. Care should be taken to ensure that the air intake and exhaust areas are not obstructed for air flow.

Electrical considerations

Only qualified personnel must perform installation of the InSight Power Meter. Those personnel shall follow all safety precautions and local standards and practices.

The InSight Meter during normal operation will have lethal voltages and currents present. Extreme caution must be exercised and contact with and current carrying terminals and surfaces must be avoided.

The meter and its I/O are not intended to replace primary protection devices. Use only as secondary protection.

Do not exceed the voltage that the meter can withstand. If a HIPOT/Dielectric test is required, the InSight Meter MUST be isolated and removed from the circuit. High voltage testing will damage electronic components within the meter.

Mirus recommends CT Shorting blocks and fuses for voltage sensing leads. Place CTs in the shorting position when meter is removed for service. InSight Meter current sensing is internally grounded to GND Terminal. Do not ground CTs externally!

2.5 Installation Procedures

Installation procedures describe the general requirements for the InSight Meter installation. Specific requirements are described in the installation drawings shipped with your configuration.

The steps to be followed are:

- Placement
- Connection of input power, voltage sensing leads, CTs, I/O and communication cables plus local display when ordered.
- Start-up of the system

Installation of the InSight Meter equipment must be handled by skilled technicians and electricians familiar with the special requirements of high-energy electrical equipment. The installation must comply with the requirements of the National Electrical Code (CEC, NEC, ANSI/NFPA 70, latest issue) or other electrical authority having jurisdiction and with local codes and requirements as applicable. We strongly recommend contracting MIRUS for start-up of the InSight. Do not allow unqualified personnel to handle or operate the equipment.

2.5.1 Placement

Using the mechanical prerequisite information, determine the final location for the InSight Meter and any applicable options,

2.5.2 Connections

	WARNING
C	ONLY QUALIFIED PERSONNEL SHOULD PERFORM EQUIPMENT INSTALLATION AND START-UP. LETHAL VOLTAGES ARE PRESENT DURING START-UP PROCEDURES.
-	CONFIRM THAT ALL INCOMING LINE VOLTAGE, PRIMARY AND SECONDARY CIRCUITS ARE DE-ENERGIZED AND LOCKED OUT BEFORE ATTEMPTING ANY MAINTENANCE.
	CAUTION

ALL WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES. SUFFICIENT ROOM MUST BE PROVIDED FOR ROUTING ALL POWER CABLES. ALL SIGNAL CABLES MUST BE ROUTED SEPARATELY FROM POWER CABLES. The following diagrams outline the various methods for connecting the InSight Power Meter. CT wire range 24-10 AWG. Power Supply and Voltage sensing leads must be insulated copper wire between the range of 26-14 AWG.

3-Phase, 4-Wire WYE with No PTs, 4 CTs

3-Phase, 4-Wire WYE with No PTs, 3 CTs

3-Phase, 3-Wire Delta with No PTs, 3 CTs

Note: In delta measurement phase-B (V2) is used for reference in voltage sensing circuit; VN and GND are jumpered together and connected to phase-B, do not ground GND terminal in this configuration.

1-Phase, with No PTs, 1 CT

3-Phase, 4-Wire WYE with 3 PTs, 3 CTs

3-Phase, 4-Wire WYE with 2 PTs, 3 CTs

2.5.3 Communication

The InSight Power Meter uses 10/100Base T Ethernet Communication. Connections between meter devices and Control Logic Module (HMI) are made with standard RJ-45 8P8C Plug with T-568A or T-568B wiring assignment.

The InSight Power Meter hosts a web server that processes requests via HTTP and deliver web pages to clients. A common web browser is required to initiate communication with the graphic user interface, retrieve, monitor, and modify information from the InSight power meter. The behavior of the web server is scripted in separate files, typically dynamic HTML documents and JSON files. Therefore no additional software has to be installed on the client computer to access full control of the InSight Power Meter.

There are the following protocols used by the InSight Power Meter: TCP/IP, DHCP, NTP, FTP, HTTP, MODBUS TCP/IP, Telnet

All InSight Power Meters are shipped with a static IP address as default. The IP addresses and networking instructions are included as a separate insert with the inserts included in each shipped item. If the installation site includes a router or a residential gateway enabled to act as a DHCP server, the meter can be set to look for an IP address from a DHCP server by following the instruction in Section 2.6.3. The DHCP server will then assign a unique IP address for the InSight Power Meter and the static IP address will be dismissed from memory.

Use a CAT 5 or better cable to connect to the InSight Power Meter. To access the InSight power meter's web site, simply enter the meter's IP address as the URL in a web browser. See "Operation" section for more details.

2.5.4 Temperature Monitoring

The InSight Power Meter is equipped with four temperature monitor inputs to monitor coil ambient or surface temperatures inside Mirus products or other equipment. The InSight is configured for use of Thermocouple Type K, TC Wire.

2.5.5 Digital Inputs

Eight (8) Digital Inputs are available to receive 24V DC voltage signal status from external devices and will be available as an indicator on the InSight Power Meter Display. The digital inputs are divided into two groups, each with 4 inputs. Each group has a common reference. External auxiliary power supply 24V DC required for digital inputs to detect the voltage signal. Wire size range for connections is 26-14 AWG.

2.5.6 Relay Outputs

When remote indication is required the InSight comes with five (5) Form C relay outputs (dry-contact). These outputs are galvanically isolated from the meter electronic circuits. The relays are fully programmable to supply indication from the InSight Power Meter. Wire size range for connections is 26-14 AWG. The relay contacts are rated as follows:

N.O. Side	<u>N.C. Side</u>
5A / 125VAC	2A / 125VAC
2A / 250VAC	1A / 250VAC
3A / 30VDC	1A / 30VDC

2.6 Startup Procedures

This section presents the procedures to be used for initial start-up of the InSight Power Meter, and the sequence to be followed any time that the system is restarted after having been shut completely down with no power applied to the system.

2.6.1 Checks Before Startup

Before starting the InSight Power Meter and Alarm Monitor, read this Owner's Manual thoroughly. Be certain that you fully understand the operation of the indicators, controls, and operational sequences.

Before applying power, make sure of the following:

- Upstream power circuit breaker is open.
- Voltage connected to the InSight matches the nameplate and model number.
- Equipment has been properly grounded as per wiring/measurement configuration.
- All power and control connections are properly made and are tight.
- No obstructions that might impair proper air flow.

2.6.2 Initial Startup

After verifying the information presented in Section 2.6.1:

- Close the upstream circuit breaker.
- Close the main circuit breaker to the equipment if available and verify circuit monitor has the proper presentation

2.6.3 Checks After Startup

Normal operation of the InSight Power Meter should be verified immediately after the initial start-up has been performed (STATUS LED is flashing when ready for network communication).

Network communication

The static IP address that each meter ships with can be found in the documentation attached with every shipped unit. Typically the IP address is set in private network range such as 172.16.254.1 in IPv4. However, consult the network setup page to determine the factory-set IP address assigned to each InSight power meter.

If the installation site includes a router or a residential gateway enabled to act as a DHCP server, the meter can be set to look for an IP address from a DHCP server by shorting the two pins at the top of the meter and restarting the meter by toggling the power to it. This will reset the network settings to remove the factory-set static IP address and allow the local DHCP server to assign an IP address to the meter.

After resetting the network parameters to DHCP (if desired), log into the router or gateway that manages the TCP/IP settings or use 'Netscan' or 'Advanced IP Scanner' on Windows or any other IP scanning tool to find the IP address of the InSight power meter, look up the MAC address located on the right side of the enclosure of each InSight power meter to match the device with IP address.

Note that when in DHCP mode, the power meter's network settings are managed by the DHCP server. In this scenario, the InSight power meter waits for a DHCP server to assign the appropriate IP address and other network configuration information. If the DHCP server is not found the meter just runs with its last known settings and continues to look for the DHCP server.

If you have set the power meter to DHCP mode, it is possible to change back to a static IP configuration by manually assigning a static IP address to the InSight meter. See "Operation / Meter Settings and Configuration" section for details.

If choosing to use a local DHCP server to set the meter's IP address, it is necessary to have an understanding of basic TCP/IP concepts, including working knowledge of subnets to have a full understanding of the InSight power meter network communication, including DHCP.

When there is no local network connected to the InSight meter settings can be accessed using the LCD display (optional part) via the serial communication adapter. The "Comm" port is located in front of flashing LEDs. Note: the LCD screen needs the RJ11 6P6C adapter to connect to the InSight meter 6 pin connector. Contact factory for details.

If the InSight power meter appears to be on a different subnet than your PC you need to change the "Properties" for the "Internet Protocol Version 4 (TCP/IPv4)" of your Local Area Connection as required to establish proper network communication. Make sure you change your own IP address and Subnet Mask to match IP settings of the InSight power meter.

Using a web browser of your choice (recommended Firefox or Chrome) enter the InSight IP address in the browser address bar and load the InSight web content.

Operation

3.0 Scope

This section describes how to interface with the InSight Power Meter and Alarm Monitor. This includes accessing the real-time metering data and setting parameters using a Touchscreen HMI (Human-Machine Interface) or by using a standard web browser.

3.1 Browser Display Overview

When navigating InSight from your preferred web browser, the screen layout is as follows:

InSight	Menu	Meter Se	Alar	ms CTIVE!	
117	0.0	000.0	0.0	00.0	
100					
1 hope					

1. Menu

Provides navigation to all meter screens and settings.

- 2. Display Screen Lists the current screen being displayed.
- 3. Meter Select When multiple meters are connected, allows user to toggle between meters and list the current meter being displayed. 4. Alarm Indicator
 - If an Alarm condition is triggered the notification is provided here. To view the alarm, click this control. Display whether the system is a Delta or Wye configuration.
- 5. Connection Type The current date and time is displayed here.
- 6. Date / Time
- The Main Display Area will display metering data for each 7. Main Display screen that is selected.
- 8. Notes
- This area is reserved for special notifications. 9. Meter Status Provides meter and communication status.

3

3.2 Menu

ľ	Menu
	Home
	Voltages
	Currents
	Power
	Harmonics
	Scope
	Phasors
	Temperatures
	I/O Status
	Alarms
	Alarm_History
	Settings
1	

Click on Menu button to select which meter screen to view. For setup and configuration click Settings.

InSight Menu Power Meter Meriter Voltages

Meter Select Solo

Alarms CLEAR

MIRUS

IP: ... | Wiring: wye | Frequency: 60Hz | Firmware: 4113

IP. ... | Wring. wye | Frequency. 60Hz | Firmware: 4113

3.3 Browser Display Screens

1	V	0	lt	a	g	e	s

Phase to phase	 RMS Volts %THD Peak Volts Frequency (Hz) Avg. Ph-Ph Volts Avg. %THD % Voltage Imbalance 	L12 L23 L31 Arg	Флет 497.0v 497.8v 499.5v 499.9v 0.3s	ник. 72.0 % и 72.1 % и 72.4 % и	рыл 287.50 286.50 288.10 287.50 0.3	x100 2.1 1.9 1.8 2.0	Prant. RMS 287.5 286.6 288.7	7	Hes 60.0, 60.0, 60.0,	114 Hon. 100.0% 100.0% 100.0% 100.0%
Phase to neutral	 RMS Volts Avg. Ph-N Volts % Voltage Imbalance 	Staturs C	ж						IP	Wring: wye Freque
<u>Currents</u>		InS	Current	Menu Current	S %THD	Meter Se Solo	Peak C	Alarms CLEAR	ector M	MIRUS
Phase	 Amps %THD Crest Factor Peak Amps K Factor Avg. Phase Current Avg. %THD % Current Imbalance 	L1 L2 L3 N Ang Imbalance	23.5. 23.6. 23.7, 0.1, 23.5, 0.6, 23.6,	2.2%	6.0% 5.1% 5.2%	23.4 ^x 23.5 ^x 23.7 ^x	34.2 ^A 34.8 ^A 34.8 ^A	1.456 1.477 1.449	1.11 : 1.07 : 1.08 :	23.5 23.6 23.7 0.1
Neutral	- Amps	Status: C	ж						IP)	Wring: wye Frequ
Demand	- Current Demand (A) (Ability to Reset when logged in)									

<u>Power</u>		Insight Menu Power Meters Meters	Ieter Select Alarms Solo CLEA	R
Total	 Active Power (kW) Reactive Power (kVAR) Apparent Power (kVA) True Power Factor (Pf) kW Demand (kW_D) (Ability to Reset when logged in) 	Letters Descention Descention 11 0.0.wr -6.7.wr 6.7.vr 12 -0.1.wr -6.7.wr 6.8.wr 13 0.0.wr -6.8.wr 6.8.wr 14 0.0.wr -6.8.wr 6.8.wr 15 0.0.wr -6.8.wr 6.8.wr 16 0.0.wr -6.7.wr 6.7.wr 14 0.0.wr -6.7.wr 6.7.wr 12 0.0.wr -6.8.wr 6.8.wr 14 0.0.wr -6.8.wr 6.8.wr 14 0.0.wr -6.8.wr 6.8.wr 14 0.0.wr -6.8.wr 6.8.wr 14 0.0.wr -6.8.wr 6.8.wr 15 0.0.wr -20.2.wr 20.2.wr 15 0.0.wr -20.2.wr 20.2.wr	-0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01	
Fundamental	 Active Power (kW) Reactive Power (kVAR) Apparent Power (kVA) Displacement Power Factor (dPf) 	Juleo OK		P = Wing wyt Feguny 400 (Finness 415
<u>Harmonics</u>		InSight the Nation Known	Ieter Select Alarms Solo CLEA	R MIRUS
Phase	Voltage %THDCurrent %THD		Hamionic Disidration	
RMS	- Fundamental	به احد از		E B R
Range Select	- Harmonic # 1 – 21 - Harmonic # 22 – 42	• V L1 • V L2 • V L3 1-21 2 • I L1 • I L2 • I L3 43-64	22-42 RMS Fund. Full %THD	Data

Status: OK IP ... | Wring wye | Frequency: 60Hz | Firmware 4113

- Harmonic # 43 64
- Harmonic # 1 64

ScopePhase- Volts
- CurrentNeutral- Current

Phasors

Phase

VoltsCurrent

Temperatures		InSight	Menu Te	mperatures	Meter Se Solo	elect	Alarms CLEAR	MIR
		Top Colls	Temperature 28.9 c	Alarm Limit 1 111.0 °C	Alarm Limit 2 170.0 °C	Alarm Limit 3		
Thermonounle	 T1 – T4 3 Alarm Setpoints 	Bottom Colls	29.2 -	170.0 -	170.0 -	200.0		
Thermocouple		Capacitors	29.3 ·c	70.0 ·c	70.0 ·c	100.0		
		Inlet Ambient	28.7 -	45.0 ·c	45.0 °	100.0		
	·	Power Meter	29.8 _{°°}					
Power Meter	- Internal Temperature							

I/O Status

Digital Inputs	- D1 – D8
Relay Outputs	- RLY1 – RLY5
Input Expressior	ns - IE0 – IE16 (Programmable)
Output Expression	ons - OUT1 – OUT3 (Programmable)

IP | Wring: wye | Frequency 60Hz | Fin

are: 4113

IP ... | Wining wye | Frequency 60Hz | Fim

are: 4113

<u>Alarms</u>

Programmable for any Meter values. Displays programmed setpoints and present values.

When no Alarm conditions are active, Alarm Status will indicate CLEAR.

InSigh	t"h	Menu Al	u arms	Me	ter Select Solo	Alarms CLEAR
Name	Linit		Pres	ent value(s)		
V RMS Max	498.03		288.6 -	287.6	289	
I RMS Max	1045.0.4		23.5 12	23.6A L2	23.7	
Frequency (+/-)	0.500	ta La 🕴	59.981 Hz L2	59.981 Hz L3:	59.981	
Capacitance Min	1935.0 u	e 11	215.8 - 12	217.2 ur La	217.7	
V THD Max	400.03		1.9% L2	1.9% L2	2	
I THD Max	400.05		4.9% 12	4.3% LR	4.4 %	
V Inbalance Max	3.05		0.2 %			
I Imbalance Max	8.01		0.5%			
Overvoltage	845.01		408.57 12	405.7 V LR	409.3	
Overcurrent	1478.0/		35.14 12	35.2 A L3	34.5	
Undervoltage	0.01		408.57	405.7 1 13	409.3	
Phase Loss						
Phase Sequence						
		Measurer	Liwit 1	Limit 2	Limit 3	
		28.6	111.0	170.0	200.0	
Temperature Max		29.1	170.0	170.0	200.0	
		29.0	70.0	70.0	100.0	
		28.4	45.0	45.0	100.0	

When Alarm conditions are active, Alarm Status will indicate ACTIVE. The values in Alarm state will be colored in Red.

Alarms History

InSight The	Menu Al	u arm_	History	Meter Sel Solo	lect	Alarms CLEAR	MIRUS
Previous Entry Next Entry							
History Edex: 0							
Name	Linit		Pres	ent value(s)			
V RMS Max	490.0V		0.1 1 12:	0.1V LR	0.1		
I RMS Max	1645.0A		0.1A L2	0.14 13	0.1		
Frequency (+/-)	0.500Hi	E 1.1	0.391 × L2	61,405Hz L3	28.772 ···		
Capacitance Min	1995.0 uP	1.1	1206.1 × ta	2480.6 =	450 ×		
V THD Max	400.0%	L1:	400% 12	400% L3	400 %		
I THO Max	400.01%		400 12	400 % 13	400		
V Imbalance Max	3.0%	1.1	3.1				
I Imbalance Max	8.0%	_					
Overvoltage	0.0V	1.1	0.3/	0.47 13	0.3		
Overcurrent	0.0A	Lt.	0.2 1 12	0.2 × 1.3	0.2		
Undervoltage	V						
Phase Loss							
Phase Sequence							
		Measured	Linit 1	Limit 2	Limit 3		
		28.5	111.0	170.0	200.0		
Temperature Max		28.4	170.0	170.0	200.0		
		28.3	70.0	70.0	100.0		
		28.0	45.0	45.0	100.0		

3.4 Meter Settings and Configuration

Click Menu/Settings to open the meter Configuration page. The page content is protected and requires authentication to view and make any changes. When prompted for a username and password, enter the following credentials:

User: **mirus**; password: **insight** (Alternatively used user: **lpc**; password: **escherlogic**)

Configuration

Once the Configuration page loads, set the following parameters:

Meter Wiring mode [Delta, Wye] Supply Frequency [50, 60 Hz] Nominal Voltage [690V, 600V, 480V, 440V, 400V, 208V/240V, Unset] Nominal Current [Value] Nominal Power [Value] Nominal Capacitance [Value] Current Transformers Ratio Potential Transformers Ratio

After all changes are done click 'Memorize ALL changes'

Network Settings

DHCP or static IP IP address Net Mask Gateway Primary DNS Secondary DNS FTP address FTP port Log server

<u>Network configuration File/Reset</u> [Memorize network settings] [Restart Network]

Device reboot [password required] Enter the reboot password '1234' and click 'Reboot'

Time settings

SNTP server: Time zone offset:

Measured Voltages	L1	L2	L3 V 0.100 V Austy PT Autor	V	
elana mana alla atsa	Tites 5	-			
Measured Currents Installed CT Amps Ratio	L1 1072 A 100 A 100 A 1000 A 1000 A	L2 0.872 5 100 10 10 10 10 10 10 10 10 10 10 10 10	L3 A 0.372 A Apply CT adjust	N A 0.674 mont	A
eter installation setting follor witing mode Deta	Meter accume Result To Resolt WD	Ilator resets	ominal Vollage 690V © 440V 800V © 400V 480V © 208/240V Unset	Nominal Current 740 Nominal Power 1999 Nominal Capacitano VLEVEL 723454	jA KW e jisse juF

nSight	Labe	s Alarm	limits Network	Configuration	Refeesh
ich Robesh to clope	ly procent values				
MAC: (00:21:3	39:00:04:dc	1			
Network settin	ngs		Time settings		
	O DHCP Client # Static IP		SNTP Server: 2963 Time Zone Offset -5	166 122.125	
Our IP	192.368.1.177				
Not Mask	255,255,255.0				
Galoway.	192.165.1.1				
Primary DNS:	392.368.1.1				
Secondary DNS	0.0.0				
FTP Address	192, 168-1, 137				
FTP Pert	20				
Log Server.	6.6.6.0				
Save network s	ettings)				
Network Conf	iguration File/	Reset	Device reboot		
Memorine netwo	ork settings		Enter REBOOT code to	reboot server. c	
Rostart activor	1		Robooti		

InSight Labels Alarm limits Network Configuration **Alarm Limits** ature limits *C Input *C TC1 26:1 TC2 36:7 Limit **Temperature Limits** 90.6 90.6 40.6 **Electrical Limits** TC3 17.1 TC4 37.4 Refresh Apply Electrical Limits RMS al a Flag Marsh h Apply Electrical Links Save Electric InSight Labels Alarm limits Network Configuration Labels **Digital Inputs** Input Expressions Outputs Temperature Inputs labels TC1 101 TC2 102 TC3 101 TC4 105 User Labe User Label User Labe Label **Digital Inputs** RLY1 11 RLY2 12 RLY3 11 RLY4 14 RLY5 15 OUT1 off OUT2 off OUT3 off IE1 83 IE2 83 IE3 83 IE4 84 IE5 93 IE6 84 IE7 85 IE8 84 DI2 4: Input Expressions DI3 d3 DI4 d4 DI5 d5 DI6 d6 Outputs DI7 d7 DI8 da Temperature inputs labels E12

The alarm limits can also be set on the local display by scrolling through all of the measurement screens until you reach the 'Alarm Limits' screen. Any changes made on this screen will be saved to the meter and will be viewable on the web browser screen as shown above.

Apply Labels

INST-M001-A5

3.5 Local Display Screen Overview

Press the up and down arrows to navigate through the different measurement screens. Measurement screens include Voltage, Current, Power Factor, Temperature, Harmonics Spectrum, Scope, Phasors, and meter I/O status.

Press the right button to navigate to the date and time screen.

When an alarm is active, the 'Alarms' screen will automatically appear. At the bottom of the screen, the alarm conditions that are causing the alarm will cycle. In the middle of the screen, a button to silence the alarm buzzer can be clicked by pressing the down arrow followed by the Return key.

When the alarm is silenced, the 'Alarm' LED at the top right will stay red but the screen will switch to the 'Alarm History' page. The historical alarm conditions can be cycled through by clicking on the 'Prev' and 'Next' buttons. The date and time stamp will indicate when the alarm occurred.

When in the 'Alarm History' screen, the down button takes you to the measurements screens.

3.6 The 7" High Performance Mountable Panel PC with Linux

The optional 7 Inch [178mm] TFT LCD is a complete touch panel computer solution providing human machine interface (HMI) comprised of a 7" TFT LCD, baseboard and computer-on-module. It features full Linux operating system providing a gateway to one (option PM-D2 or CM-D2) or two (DM-D2) InSight Power Meters allowing for local graphic user interface directly on the monitored equipment i.e. the Lineator[™].

It accepts 5-28VDC input on the power terminal block connector.

The software image includes an initial filesystem which boots immediately after the power is applied and the kernel is loaded.

After the initial splash screen the graphic user interface appears on the screen. Graphics and text is displayed on a WVGA 800x480 RGB TFT touch panel

The baseboard features two Ethernet ports 10/100 first (ETH0), next to the 3.5mm audio port, is used for communication with client network and second (ETH1) for communication with the InSight power meters (internal network).

Similar to the basic InSight power meter the network is configured for the DHCP as default settings.

Network settings could be changed on customer request by editing /etc/network/interfaces in the Linux system via SSH session.

Note that network settings will affect the communication with individual InSight power meters therefore it is allowed only at the factory or by trained Mirus representative. Besides the user name and password credentials are required for remote connections via SSH.

This board optionally supports 802.11 through the WIFI module. Consult factory for support.

The baseboard also includes two USB 2.0 ports labelled J8 for additional peripherals such as keyboards, mice, wifi adapters, etc. However they are typically not used in customer applications, since some uncommon devices may require a kernel recompile.

Advanced Functions

4.0 Scope

4

The InSight Power Meter contains advanced metering tools and is able to measure a multitude of power, energy and power quality parameters. Most of the advanced functions are accessible directly from the meter user interface as every meter comes with a powerful software that helps access the information. This chapter introduces advanced functions and raw measurements access to help with custom software development and meter integration into bigger systems.

4.1 Measurements

The InSight Power Meter supports HTTP protocol and has a Web Server function making the InSIght meter accessible through Ethernet anytime and from anywhere. The Ethernet module supports all major web browsers

The IP address the InSight meter needs to be known prior to accessing measurements data.

Users enter the correct IP address of the InSight meter in the address bar of the web browser. This provides access to data and settings.

The following measurement tabs are provided by the InSight meter:

Home, Voltages, Currents, Power, Energy, Harmonics, Scope, Phasors, Temperatures, I/O Status, Alarms, Alarm_History

In case the user wishes to develop his own customized web server or integrate the meter into a bigger systems all measurements data are available from the meter by means of the **Modbus TCP protocol** (see Appendix A, for data address table) or direct access to each measurement tab using the appropriate **JSON** file.

JSON is a lightweight data-interchange text format and it is easy to read and write. It is completely language independent but uses conventions that are familiar to programmers of many languages including C++, C#, Java, JavaScript, Python and many others. Therefore it is ideal for data-exchange and natural for JavaScript to use.

To access raw data from a page use the same file name for the JSON file format as referred by the user interface tab name i.e. for Voltages use the voltages.json file.

Example: http://192.168.1.237/voltages.json http://192.168.1.237/currents.json http://192.168.1.237/power.json etc...

Data is refreshed each time this page is requested by the web browser.

4.2 CGI Web Pages

The InSight Power Meter provides hardware information by means of the following CGI pages:

/cgi-bin/system.cgi - shows all system threads and active system timers.

/cgi-bin/sockets.cgi – shows all TCP and UDP sockets and their status

/cgi-bin/freeze.cgi – shows the entire logged contents of the meter alarm history captured as freeze frames

/cgi-bin/serialhome.cgi - shows host info and basic network settings

4.3 Telnet Session

Although it is not recommended for basic data and settings the InSight Power Meter can be accessed via interactive text-oriented communication facility using a telnet session.

Since all information and settings are available using graphic user interface and other means i.e. JSON files, it is not recommended to use text-oriented Telnet session for InSight meter communication.

A proprietary Etag commands are used for text based data-exchange between the host and the InSight meter.

Contact factory for support

Maintenance

5.0 Scope

5

This section describes maintenance of the InSight, including preventive maintenance, troubleshooting, and information about replacement parts.

5.1 **Preventive Maintenance**

The technician or electrician performing preventive maintenance on the InSight Power Meter must read this manual thoroughly and be familiar with the power quality metering equipment.

IMPORTANT

Isolate and de-energize the equipment for all maintenance operations.

- a. Ensure that the equipment is clean and free of loose dust, dirt, and debris.
- b. Inspect the air intake and exhaust plates and clean as required. Verify that air flows freely through the equipment. Clean the air intake and exhaust plates with a vacuum cleaner.
- c. Verify that all system monitoring functions operate properly.

Calibration

The InSight monitoring package is intended to be used for indication purposes only. Each meter is calibrated before shipment but Mirus does not guarantee accuracy to within any specific standards and does not recommend use of this meter as a validation device without performing third part calibration.

Consult Mirus Customer Support to obtain a calibration procedure if using the InSight meter as a validation device for an extended period of time.

5.2 Troubleshooting

The following is a list of the most frequent problems, their most likely cause, and the possible solutions in the form of actions to be taken. In the event that the suggested solution does not solve the problem, call MIRUS International Inc. Customer Support Services for assistance.

A. InSight has no input power

Cause #1:	No building power to the InSight
Action:	Restore building power
Cause #2:	Blown Fuses.
Action:	Check and replace blown fuses.

Cause #3:

The Power Supply is faulty. Have a qualified technician check the wiring continuity between the power supply input and the building input power panel. Action:

No display on LCD Β.

Cause #1:	Blown Fuse in Logic Controller.
Action:	Check and replace blown fuse.
Cause #2: Action:	Wiring fault. Have a qualified technician check for wiring continuity between Logic Controller and LCD and communication cable between InSight Meter and Logic Controller.
Cause #3:	Defective LCD display.
Action:	Replace LCD Panel.
Cause #4:	Faulty Logic Controller.
Action:	Replace Logic Controller.

C. **Incorrect Meter readings**

Cause #1:	CT's not wired correctly.
Action:	Check CT wiring and phase direction.
Cause #2: Action:	PT's not wired correctly, or PT fuse blown. Check PT wiring as per diagrams issued with equipment. Check all associated fuses and replace blown fuses.
Cause #3:	Meter not configured correctly.
Action:	Login to meter and check all configuration parameters.

Appendix

A.0 MODBUS IMPLEMENTATION

Α

Function Code	Register Address (16-bit)	Description	Comment					
43	MEI 14	read device ID, obj ID: 0,1,2,3,4.						
Function Codes 01/05/15:								
Relays sta	tus:							
1	0	relay #1	(must have force bit ON to control)					
1	1	relay #2	(must have force bit ON to control)					
1	2	relay #3	(must have force bit ON to control)					
1	3	relay #4	(must have force bit ON to control)					
1	4	relay #5	(must have force bit ON to control)					
1	5	logic output bit: 5						
1	6	logic output bit: 6						
1	7	logic output bit: 7						
Logic Coils	status:							
1	14	coil bits used for boolean engine input	address 14-29					
1	15	coil bits used for boolean engine input						
1	16	coil bits used for boolean engine input						
1	17	coil bits used for boolean engine input						
1	18	coil bits used for boolean engine input						
1	19	coil bits used for boolean engine input						
1	20	coil bits used for boolean engine input						
1	21	coil bits used for boolean engine input						
1	22	coil bits used for boolean engine input						
1	23	coil bits used for boolean engine						
1	24	coil bits used for boolean engine input						
1	25	coil bits used for boolean engine input						
1	26	coil bits used for boolean engine input						

Function Code	Register Address (16-bit)	Description Comment		
1	27	coil bits used for boolean engine input)	
1	28	coil bits used for boolean engine input		
1	29	coil bits used for boolean engine input		
Function C	Code 02 (Rea	ad Discrete Inputs):		
Discrete I	nputs Statu	IS:		
2	100	24VAC digital input #1		
2	101	24VAC digital input #2		
2	102	24VAC digital input #3		
2	103	24VAC digital input #4		
2	104	24VAC digital input #5		
2	105	24VAC digital input #6		
2	106	24VAC digital input #7		
2	107	24VAC digital input #8		
Boolean E	ngine Expre	essions status:		
2	116	mapped input array for boolean engine		
2	117	mapped input array for boolean engine		
2	118	mapped input array for boolean engine		
2	119	mapped input array for boolean engine		
2	120	mapped input array for boolean engine		
2	121	mapped input array for boolean engine		
2	122	mapped input array for boolean engine		
2	123	mapped input array for boolean engine		
2	124	mapped input array for boolean engine		
2	125	mapped input array for boolean engine		
2	126	mapped input array for boolean engine		
2	127	mapped input array for boolean engine		
2	128	mapped input array for boolean engine		
2	129	mapped input array for boolean engine		
2	130	mapped input array for boolean engine		
2	131	mapped input array for boolean engine		

Owner's Manual

Function Code	Register Address (16-bit)	Description	Comment	
Function	Code 03/06	/16 (Read Holding Registers):		
Digital Sig	nal Processo	or STATUS1 register (32-bit):		
3	10	(32-bit) DSP Control state MSB		
3	11	(32-bit) DSP Control state LSB		
3	12	(32-bit) DSP Control flags MSB		
3	13	(32-bit) DSP Control flags LSB		
PCB Therm	histor Temp	erature value (deg.C. X 10):	F	
3	100	(16-bit) C/J temperature		
Thermoco	uples Temp	erature values (deg.C. X 10):		
3	101	(16-bit) T/C temp. #1		
3	102	(16-bit) T/C temp. #2		
3	103	(16-bit) T/C temp. #3		
3	104	(16-bit) T/C temp. #4		
Thermoco	uples Temp	erature Limit values:		
3	105	(16-bit) T/C temp. #1 Limit 1		
3	106	(16-bit) T/C temp. #2 Limit 1		
3	107	(16-bit) T/C temp #3 Limit 1		
3	108	(16-bit) T/C temp #4 Limit 1		
3	100	(16 bit) T/C temp #1 Limit 2		
3	110	(16-bit) T/C temp. #7 Limit 2		
3	111	(10 -bit) T/C temp. #2 Limit 2	+	
2	112	(10 -bit) T/C temp. #3 Limit 2		
3	112	(10-bit) T/C temp. #4 Limit 2		
3	113	(16-bit) T/C temp. #1 Limit 3		
3	114	(16-bit) 1/C temp. #2 Limit 3		
3	115	(16-bit) 1/C temp. #3 Limit 3		
3	116	(16-bit) I/C temp. #4 Limit 3		
Measured	RMS values	s (32-bit):		
NOTE: 32-	bit values a	re stored as two 16-bit words with b	ig-endian storage (most	
significant	value is sto	ored first).		
3	200	(32-bit) MSB, AIRMS	Phase A current rms value.	
	201	(32-bit) LSB, AIRMS	Phase A current rms value.	
	202	(32-bit) MSB, AVRMS	Phase A voltage rms value	
	203	(32-bit) LSB, AVRMS	Phase A voltage rms value	
	204	(32-bit) MSB, BIRMS	Phase B current rms value	
	205	(32-bit) LSB, BIRMS	Phase B current rms value	
	206	(32-bit) MSB, BVRMS	Phase B voltage rms value.	
	207	(32-bit) LSB, BVMRS	Phase B voltage rms value.	
	208	(32-bit) MSB, CIRMS	Phase C current rms value	
	209	(32-bit) LSB, CIRMS	Phase C current rms value	
	210		Phase C voltage rms value.	
	211		Phase C voltage rms value.	
	212	(JZ-UIL) IVIDD, NIKIVID	Neutral current rms value	
	213	(32-bit) LOD, INIKIVIO		
	214		registers	
	215	(32-bit) LSB, ISUM	Sum of IAWV, IBWV and ICWV	
		(, · ···	registers	

Function Code	Register Address (16-bit)	Description	Comment
Eurotion	Cada 02/06	(46 (Dood Holding Dogistors);	
Moscurod	Dook Volue	(16 (Read Holding Registers):	
Ivieasureu	reak value		
		IPPHASE/VPPHASE BITS	
		31 27 26 25 24 23	0
		00000 24-BIT UNS	IGNED NUMBER
	PEA	K DETECTED PEAK I	DETECTED ASE A
		PEAK DETECTED ON PHASE B	
3	216	(32-bit) MSB, IPEAK	Current peak register.
	217	(32-bit) LSB, IPEAK	Current peak register.
	218	(32-bit) MSB, VPEAK	Voltage peak register.
	219	(32-bit) LSB, VPEAK	Voltage peak register.
Power Qua	ality Registe	ers (32-bit) values:	
3	220	(32-bit) MSB, AIMAV	Phase A current mean absolute value
	221	(32-bit) LSB, AIMAV	Phase A current mean absolute value
	222	(32-bit) MSB, BIMAV	Phase B current mean absolute value
	223	(32-bit) LSB, BIMAV	Phase B current mean absolute value
	224	(32-bit) MSB, CIMAV	Phase C current mean absolute value
	225	(32-bit) LSB, CIMAV	Phase C current mean absolute value
	226	(32-bit) MSB, AWATT	Phase A total active power
	227	(32-bit) LSB, AWATT	Phase A total active power
	228	(32-bit) MSB, BWATT	Phase B total active power
	229	(32-bit) LSB, BWATT	Phase B total active power
	230	(32-bit) MSB, CWATT	Phase C total active power
	231	(32-bit) LSB, CWATT	Phase C total active power
	232	(32-bit) MSB, AVA	Phase A total apparent power
	233	(32-bit) LSB, AVA	Phase A total apparent power
	234	(32-bit) MSB, BVA	Phase B total apparent power
	235	(32-bit) LSB, BVA	Phase B total apparent power
	236	(32-bit) MSB, CVA	Phase C total apparent power
	237	(32-bit) LSB, CVA	Phase C total apparent power

Function Code	Register Address (16-bit)	Description	Comment
Function (Codes 03/0	6/16:	
Power Qu	ality Regist	ter (16-bit) values:	
3	250	(16-bit) PHSTATUS	Phase peak register
3	251	(16-bit) ANGLE0	Time Delay 0
	252	(16-bit) ANGLE1	Time Delay 1
	253	(16-bit) ANGLE2	Time Delay 2
		ANGLE2 ANGLE0	
3	254	(16-bit) PHNOLOAD	Phase no load register
	255	(16-bit) PHSIGN	Power sign register
	256	(16-bit) APF	Phase A power factor x 1000
	257	(16-bit) BPF Phase B power factor x 1000	
	258	(16-bit) CPF	Phase C power factor x 1000
	259	(16-bit) APERIOD	Phase A period converted
L			Frequency Hz x 100
	260	(16-bit) BPERIOD	Phase B period converted
			Frequency Hz x 100
	261	(16-bit) CPERIOD	Phase C period converted
			Frequency Hz x 100

Function Code	Register Address (16-bit)	Description	Comment	
Function (Codes 03/06/1	16:		
Energy Re	gisters (32-b	it) values:		
3	300	(32-bit) MSB, AWATTHR	Phase A total active energy	
			accumulation	
3	301	(32-bit) LSB, AWATTHR	Phase A total active energy	
	000		accumulation	
3	302	(32-DIT) MSB, BWATTHR	Phase B total active energy	
	202		Accumulation	
3	303	(32-DIL) LSB, BWATTHR	Phase B total active energy	
2	204		Dhoop C total active operav	
3	304		Filase C total active energy	
3	305	(32-bit) I SB CWATTHP	Phase C total active energy	
5	303	(32-bit) ESB, CWATTIN	accumulation	
3	306	(32-bit) MSB_AFWATTHR	Phase A fundamental active	
Ũ	000		energy accumulation	
3	307	(32-bit) LSB. AFWATTHR	Phase A fundamental active	
-		(,	energy accumulation	
3	308	(32-bit) MSB, BFWATTHR	Phase B fundamental active	
			energy accumulation	
3	309	(32-bit) LSB, BFWATTHR	Phase B fundamental active	
			energy accumulation	
3	310	(32-bit) MSB, CFWATTHR	Phase C fundamental active	
			energy accumulation	
3	311	(32-bit) LSB, CFWATTHR	Phase C fundamental active	
			energy accumulation	
3	312	(32-bit) MSB, AFVARHR	Phase A fundamental reactive	
	040		energy accumulation	
3	313	(32-DIT) LSB, AFVARHR	Phase A fundamental reactive	
3	317	(32-bit) MSB_BE\/APHP	Phase B fundamental reactive	
5	514		energy accumulation	
3	315	(32-bit) LSB_BE\/ARHR	Phase B fundamental reactive	
Ũ	010		energy accumulation	
3	316	(32-bit) MSB. CFVARHR	Phase C fundamental reactive	
-		(energy accumulation	
3	317	(32-bit) LSB, CFVARHR	Phase C fundamental reactive	
			energy accumulation	
3	318	(32-bit) MSB, AVAHR	Phase A total apparent energy	
			accumulation	
3	319	(32-bit) LSB, AVAHR	Phase A total apparent energy	
			accumulation	
3	320	(32-bit) MSB, BVAHR	Phase B total apparent energy	
	0.01		accumulation	
3	321	(32-bit) LSB, BVAHR	Phase B total apparent energy	
	000			
3	322		Priase C total apparent energy	
2	202		Dhase C total apparent approx	
3	323			
			accumulation	

Function Code	Register Address (16-bit)	Description	Comment
		_	
Function (Codes 03/06/1	6:	
Alarm Lim	its (32-bit) va	lues:	-
3	400	(32-bit) MSB, Overvoltage	Overvoltage
3	401	(32-bit) LSB, Overvoltage	Overvoltage
3	402	(32-bit) MSB, Overcurrent	
3	403	(32-bit) LSB, Overcurrent	
3	404	(32-bit) MSB, Voltage Sag	
3	405	(32-bit) LSB, Voltage Sag	
3	406	(32-bit) MSB, IRMS Warning	
3	407	(32-bit) LSB, IRMS Warning	
3	408	(32-bit) MSB, VRMS Alarm	
3	409	(32-bit) LSB, VRMS Alarm	
3	410	(32-bit) MSB, IRMS Alarm	
3	411	(32-bit) LSB, IRMS Alarm	
3	412	(32-bit) MSB, Frequency	
		tolerance	
3	413	(32-bit) LSB, Frequency	
		tolerance	
3	414	(32-bit) MSB, Low Capacitance	
		Threshold	
3	415	(32-bit) LSB, Low Capacitance	
		Threshold	
3	416	(32-bit) MSB, VTHD Limit	
3	417	(32-bit) LSB, VTHD Limit	
3	418	(32-bit) MSB, ITHD Limit	
3	419	(32-bit) LSB, ITHD Limit	
Unbalance	e Limits (32-bi	it) values:	
3	440	(32-bit) MSB, Voltage	
		Unbalance Limit	
	441	(32-bit) LSB, Voltage	
		Unbalance Limit	
3	442	(32-bit) MSB, Current	
		Unbalance Limit	
	443	(32-bit) LSB, Current	
		Unbalance Limit	
TDD (32-b	it) values:		1
3	450	(32-bit) MSB, Total Demand	
		Distortion (TDD)	
	451	(32-bit) LSB, Total Demand	
Valtere D	alı (22 hit)		
	eak (SZ-DIL) Va		
3	460		Phase A Voltage peak value
	461		Phase A Voltage peak value
3	462	(32-bit) MSB, VPEAK-B	Phase B Voltage peak value
	463 (32-bit) LSB, VPEAK-B Phase B Voltage peak value		Phase B Voltage peak value
3	464	(32-bit) MSB, VPEAK-C	Phase C Voltage peak value
	465	(32-bit) LSB, VPEAK-C	Phase C Voltage peak value
	1		

Function Code	Register Address (16-bit)	Description	Comment	
	(10-10)			
Function (Codes 03/06/1	6:		
Current Pe	eak (32-bit) va	lues:		
3	470	(32-bit) MSB, IPEAK-A	Phase A Current peak value	
3	471	(32-bit) LSB, IPEAK-A	Phase A Current peak value	
3	472	(32-bit) MSB, IPEAK-B	Phase B Current peak value	
3	473	(32-bit) LSB, IPEAK-B	Phase B Current peak value	
3	474	(32-bit) MSB, IPEAK-C	Phase C Current peak value	
3	475	(32-bit) LSB, IPEAK-C	Phase C Current peak value	
Crest Fact	or (32-bit) va	ues:		
3	480	(32-bit) LSB, CF-A	Phase A Crest Factor value	
3	481	(32-bit) MSB, CF-A	Phase A Crest Factor value	
3	482	(32-bit) LSB, CF-B	Phase B Crest Factor value	
3	483	(32-bit) MSB, CF-B	Phase B Crest Factor value	
3	484	(32-bit) LSB, CF-C	Phase C Crest Factor value	
3	485	(32-bit) MSB, CF-C	Phase C Crest Factor value	
	00 :()			
K-Factor (32-bit) values			
3	490	(32-bit) LSB, K-Factor-A	Phase A K-Factor Value	
3	491	(32-bit) MSB, K-Factor-A	Phase A K-Factor Value	
3	492	(32-Dit) LSB, K-Factor-B	Phase B K-Factor Value	
3	493	(32-DIT) MSB, K-Factor-B	Phase B K-Factor value	
3	494	(32-bit) LSB, K-Factor-C	Phase C K-Factor Value	
3	495	(32-bit) MSB, K-Factor-C	Phase C K-Factor value	
Canaaitan	00 (22 hit) va			
	500		Phase A Capacitance uE value	
3	500	(32-bit) LSB, CAP-A-uF	Phase A Capacitance up value	
3	502	(32-bit) ISB, CAP-B-UE	Phase B Capacitance uF value	
3	502	(32-bit) MSB CAP-B-uF	Phase B Capacitance uF value	
3	504	(32-bit) I SB_CAP-C-uE	Phase C Capacitance uF value	
3	505	(32-bit) MSB_CAP-C-uE	Phase C Capacitance uF value	
3	506	(32-bit) MSB_CAP-nom-uF	Nominal Capacitance uE value	
3	507	(32-bit) MSB, CAP-nom-uF	Nominal Capacitance uF value	
Fundamer	ntal compone	nts data (32-bit):	1	
3	900, 901	(32-bit) MSB/LSB, AFVRMS	Phase A Fundamental Voltage RMS value	
3	902, 903	(32-bit) MSB/LSB, AFIRMS	Phase A Fundamental Current RMS value	
3	904, 905	(32-bit) MSB/LSB, AFWATT	Phase A Fundamental Watts	
	906, 907	(32-bit) MSB/LSB, AFVAR	Phase A Fundamental VAr	
3	908, 909	(32-bit) MSB/LSB, AFVA	Phase A Fundamental VA	
3	910, 911	(32-bit) MSB/LSB, AFPF	Phase A Fundamental Power Factor	
3	912, 913	(32-bit) MSB/LSB, AVTHD	Phase A Voltage THD	
	914, 915	(32-bit) MSB/LSB, AITHD	Phase A Current THD	

Function Code	Register Address (16-bit)	Description	Comment	
-	0 1 00/00/4			
Function	Codes 03/06/1	6: 		
Fundamer			Phase B Fundamental Valtage	
3	920, 921	(32-DIL) 1VISD/LSD, DF VRIVIS	RMS value	
3	922, 923	(32-bit) MSB/LSB, BFIRMS	Phase B Fundamental Current RMS value	
3	924, 925	(32-bit) MSB/LSB, BFWATT	Phase B Fundamental Watts	
	926, 927	(32-bit) MSB/LSB, BFVAR	Phase B Fundamental VAr	
3	928, 929	(32-bit) MSB/LSB, BFVA	Phase B Fundamental VA	
3	930, 931	(32-bit) MSB/LSB, BFPF	Phase B Fundamental Power Factor	
3	932, 933	(32-bit) MSB/LSB, BVTHD	Phase B Voltage THD	
	934, 935	(32-bit) MSB/LSB, BITHD	Phase B Current THD	
3	940, 941	(32-bit) MSB/LSB, CFVRMS	Phase C Fundamental Voltage RMS value	
3	942, 943	(32-bit) MSB/LSB, CFIRMS	Phase C Fundamental Current RMS value	
3	944, 945	(32-bit) MSB/LSB, CFWATT	Phase C Fundamental Watts	
	946, 947	(32-bit) MSB/LSB, CFVAR	Phase C Fundamental VAr	
3	948, 949	(32-bit) MSB/LSB, CFVA	Phase C Fundamental VA	
3	950, 951	(32-bit) MSB/LSB, CFPF	Phase C Fundamental Power Factor	
3	952, 953	(32-bit) MSB/LSB, CVTHD	Phase C Voltage THD	
	954, 955	(32-bit) MSB/LSB, CITHD	Phase C Current THD	
Harmonic	measuremen	ts RMS (32-bit) arrays:		
Read limit	of max. 256 by	tes on one request including head	ler	
3	1000-1125:	(32-bit) VA harmonic bins 1-63	Max.62 bins can be read at a time	
	1150-1275:	(32-bit) VB harmonic bins 1-63		
	1300-1425:	(32-bit) VC harmonic bins 1-63		
	1450-1575			
	1600-1725	IB		
	1750-1875			
Harmonic	distortion (%)) (32-bit) arrays:	-	
3	2000-2125	(32-bit) VA harmonic distortion bins 1-63		
	2150-2275	VB		
	2300-2425	VC		
	2450-2575	IA		
	2600-2725	IB		
	2750-2875	IC		
DI				
Phasors d	lata (32-bit):			
3	4000, 4001	(32-bit) MSB/LSB, VA Mag	Phase A Voltage Magnitude	
3	4002, 4003	(32-bit) MSB/LSB, VB Mag	Phase B Voltage Magnitude	
3	4004, 4005	(32-bit) MSB/LSB, VC Mag	Phase C Voltage Magnitude	
3	4006, 4007		Phase A Voltage Phase Angle	
3	4008, 4009		Phase & Voltage Phase Angle	
3	4010, 4011	(32-DIT) MISB/LSB, VC Angle	Phase C voltage Phase Angle	

Function Code	Register Address (16-bit)	Description	Comment	
		_		
Function	Codes 03/06/1	6:		
Phasors d	lata (32-bit):			
3	4012, 4013	(32-bit) MSB/LSB, IA Mag	Phase A Current Magnitude	
3	4014, 4015	(32-bit) MSB/LSB, IB Mag	Phase B Current Magnitude	
3	4016, 4017	(32-bit) MSB/LSB, IC Mag	Phase C Current Magnitude	
3	4018, 4019	(32-bit) MSB/LSB, IA Angle	Phase A Current Phase Angle	
3	4020, 4021	(32-bit) MSB/LSB, IB Angle	Phase B Current Phase Angle	
3	4022, 4023	(32-bit) MSB/LSB, IC Angle	Phase C Current Phase Angle	
3	5900-5901	(32-bit) scope update interval	Interval value in seconds	
Scope dat	a (registers h	olding an array of 2240, 32-bit, v	alues):	
	6000-	'scope data (IA[0], IB[0], IC[0],		
	10479	IN[0], VA[0], VB[0], VC[0], IA[1],		
		IB[1], etc,)		

Notes:

MIRUS International Inc. 31 Sun Pac Blvd. Brampton, Ontario Canada L6S 5P6

Use this form to order additional copies of this document, or to report any errors, omissions, or other problems you have experienced.

STREET ADDRESS			
CITY	STATE/PROV.		ZIP/PC
I would like to order	(quantity @ \$50.00 eac	ch) additional copies of	of the:
	InSight Power Meter a Owner's Manual	and Alarm Monitor INST-M001-A5	

I would like to report the following problems with this document:

Warranty Registration

WARRANTY CARD
Send this to:
By Mail: MIRUS International Inc., 31 Sun Pac Blvd., Brampton, Ontario Canada L6S 5P6 or Fax: 905-494-1140 or Email: mirus@mirusinternational.com
Model No.: Serial No.:
Date of Purchase:
Company Name:
Contact Name:
Address:
Telephone: Ext.:
E-mail:
My signature below acknowledges that I have read, fully understand, and accept the limited warranty agreement as listed on page iv of this manual.
Signature: Date:
Must return within 30 days after delivery. Please keep copy of this for your records.
Mirus International Inc. 1-888 TO MIRUS (1-888-866-4787) mirusinternational.com

MIRUS International Inc. 31 Sun Pac Blvd., Brampton, Ontario Canada L6S 5P6 Toll Free: 1 - 888 - TO – MIRUS (1 - 888 - 866 – 4787) Tel: (905) 494-1120 Fax: (905) 494-1140 E-Mail: mirus@mirusinternational.com Website: www.mirusinternational.com